Tree retraining in the decision tree learning algorithm
نویسندگان
چکیده
منابع مشابه
The Alternating Decision Tree Learning Algorithm
The application of boosting procedures to de cision tree algorithms has been shown to pro duce very accurate classi ers These classi ers are in the form of a majority vote over a number of decision trees Unfortunately these classi ers are often large complex and di cult to interpret This paper describes a new type of classi cation rule the alternat ing decision tree which is a generalization of...
متن کاملA Fast Decision Tree Learning Algorithm
There is growing interest in scaling up the widely-used decision-tree learning algorithms to very large data sets. Although numerous diverse techniques have been proposed, a fast tree-growing algorithm without substantial decrease in accuracy and substantial increase in space complexity is essential. In this paper, we present a novel, fast decision-tree learning algorithm that is based on a con...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملA Multi-relational Decision Tree Learning Algorithm - Implementation and Experiments
We describe an efficient implementation (MRDTL-2) of the Multirelational decision tree learning (MRDTL) algorithm [19] which in turn was based on a proposal by Knobbe et al. [15] We describe some simple techniques for speeding up the calculation of sufficient statistics for decision trees and related hypothesis classes from multi-relational data. Because missing values are fairly common in many...
متن کاملGlobal Tree Optimization: A Non-greedy Decision Tree Algorithm
A non-greedy approach for constructing globally optimal multivariate decision trees with xed structure is proposed. Previous greedy tree construction algorithms are locally optimal in that they optimize some splitting criterion at each decision node, typically one node at a time. In contrast, global tree optimization explicitly considers all decisions in the tree concurrently. An iterative line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1047/1/012082